Core Mathematics C2 Paper F

1. Evaluate

$$
\begin{equation*}
\sum_{r=1}^{12}\left(5 \times 2^{\prime}\right) \tag{4}
\end{equation*}
$$

2.

The diagram shows triangle $A B C$ in which $A B=12.6 \mathrm{~cm}, \angle A B C=107^{\circ}$ and $\angle A C B=31^{\circ}$.

Find
(i) the length $B C$,
(ii) the area of triangle $A B C$.
3. The curve with equation $y=\mathrm{f}(x)$ passes through the point $(8,7)$.

Given that

$$
\mathrm{f}^{\prime}(x)=4 x^{\frac{1}{3}}-5,
$$

find $\mathrm{f}(x)$.
4. Solve the equation

$$
\sin ^{2} \theta=4 \cos \theta
$$

for values of θ in the interval $0 \leq \theta \leq 360^{\circ}$. Give your answers to 1 decimal place.
5. (i) Evaluate

$$
\begin{equation*}
\log _{3} 27-\log _{8} 4 \tag{4}
\end{equation*}
$$

(ii) Solve the equation

$$
4^{x}-3\left(2^{x+1}\right)=0 .
$$

6. (a) Expand $(1+x)^{4}$ in ascending powers of x.
(b) Using your expansion, express each of the following in the form $a+b \sqrt{2}$, where a and b are integers.
(i) $(1+\sqrt{2})^{4}$
(ii) $(1-\sqrt{2})^{8}$
7. The second and fifth terms of an arithmetic sequence are 26 and 41 repectively.
(i) Show that the common difference is 5 .
(ii) Find the 12th term.

Another arithmetic sequence has first term -12 and common difference 7 .
Given that the sums of the first n terms of these two sequences are equal,
(iii) find the value of n.
8. The polynomial $\mathrm{p}(x)$ is defined by

$$
\mathrm{p}(x)=2 x^{3}+x^{2}+a x+b,
$$

where a and b are constants.
Given that when $\mathrm{p}(x)$ is divided by $(x+2)$ there is a remainder of 20 ,
(i) find an expression for b in terms of a.

Given also that $(2 x-1)$ is a factor of $\mathrm{p}(x)$,
(ii) find the values of a and b,
(iii) fully factorise $\mathrm{p}(x)$.
9.

The diagram shows the curve with equation $y=5+x-x^{2}$ and the normal to the curve at the point $P(1,5)$.
(i) Find an equation for the normal to the curve at P in the form $y=m x+c$.
(ii) Find the coordinates of the point Q, where the normal to the curve at P intersects the curve again.
(iii) Show that the area of the shaded region bounded by the curve and the straight line $P Q$ is $\frac{4}{3}$.

